Maximal operator of the Fejér means of triangular partial sums of two-dimensional Walsh–Fourier series

نویسندگان

  • Ushangi Goginava
  • Ferenc Weisz
  • F. Weisz
چکیده

It is proved that the maximal operator σ # of the triangular-Fejér-means of a two-dimensional Walsh–Fourier series is bounded from the dyadic Hardy space Hp to Lp for all 1/2 < p ≤ ∞ and, consequently, is of weak type (1,1). As a consequence we obtain that the triangular-Fejér-means σ 2n of a function f ∈ L1 converge a.e. to f . The maximal operator σ # is bounded from the Hardy space H1/2 to the space weak-L1/2 and is not bounded from the Hardy space H1/2 to the space L1/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Everywhere Convergence of a Subsequence of the Nörlund Logarithmic Means of Walsh–kaczmarz–fourier Series

The main aim of this paper is to prove that the maximal operator of a subsequence of the (one-dimensional) logarithmic means of Walsh-Kaczmarz-Fourier series is of weak type (1,1) . Moreover, we prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Kaczmarz-Fourier series is of weak type (1,1) , provided that the supremum in the maximal operator is...

متن کامل

Maximal Operators of Fejér Means of Walsh–fourier Series

The main aim of this paper is to prove that there exists a martingale f ∈ H1/2 such that the maximal Fejér operator and the conjugate Fejér operator does not belong to the space L1/2.

متن کامل

Almost Everywhere Convergence of a Subsequence of the Logarithmic Means of Vilenkin-Fourier Series

Abstract: The main aim of this paper is to prove that the maximal operator of a subsequence of the (one-dimensional) logarithmic means of Vilenkin-Fourier series is of weak type (1,1). Moreover, we prove that the maximal operator of the logarithmic means of quadratical partial sums of double Vilenkin-Fourier series is of weak type (1,1), provided that the supremum in the maximal operator is tak...

متن کامل

Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series

A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.

متن کامل

Convergence and Divergence of Fejér Means of Fourier Series on One and Two-Dimensional Walsh and Vilenkin Groups

It is a highly celebrated issue in dyadic harmonic analysis the pointwise convergence of the Fejér (or (C,1)) means of functions on the Walsh and Vilenkin groups both in the point of view of one and two dimensional cases. We give a résumé of the very recent developments concerning this matter, propose unsolved problems and throw a glance at the investigation of Vilenkin-like systems too.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012